
ASSIGNMENT 1

EEE241 ANALOG I, 2010/2011

The emitter follower is often used as an interface between a circuit with a high output resistance and a low resistance load. In such an application, the emitter follower is called a buffer.

For example, suppose a common-emitter amplifier with a 1k Ω collector resistance (output resistance) must drive a low resistance load such as an 8 Ω low power speaker. The circuit is shown in Figure 1. C1 and C2 are coupling capacitors. V_{CC} = 12 V, V_T = 26 mV and V_{BE} = 0.7 V. Assume that g_m=0.2S and r_o >> R_c for the CE circuit. For the Darlington emitter-follower, R₁ = 10 k Ω , R₂ = 22 k Ω , R_E = 22 Ω , R_L = 8 Ω , and $\beta_{DC} = \beta_{ac} = 100$ for each transistor.

Problem:

- a. Calculate the open-circuit voltage gain of the CE circuit.
- b. Calculate the voltage gain of the CE circuit if it is directly connected to the 8Ω speaker (no Darlington emitter-follower included).
- c. Give comments based on the results of 1 and 2.
- d. Calculate the voltage gain of the Darlington emitter-follower circuit.
- e. Calculate the voltage gain of the whole circuit in Figure 1.

(2) (a) A cascode circuit is shown in Figure 2. What is the minimum value of V_{BIAS} required for a cascode amplifier operating at I=100 μ A? Let $\mu_n C_{ox} = 300 \ \mu$ A/V², $\frac{W}{L} = 10$ and V_t = 0.6 V.

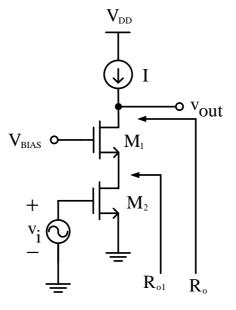


Figure 2

(b) Consider the same cascode amplifier shown in Figure 2.

I = 100 μ A and for each transistor, $\frac{W}{L} = \frac{5\mu m}{0.5\mu m} = 10$, V_A = 10V, and $\mu_n C_{ox} = 190 \mu A_{V^2}$. Find R₀₁ and R₀.

(3) Determine the small-signal voltage gain of the multistage cascade circuit shown in Figure 3. The transistor parameters are $K_1 = 0.5 \text{ mA/V}^2$, $K_2 = 0.2 \text{ mA/V}^2$, $V_{t1} = V_{t2} = 1.2 \text{ V}$ and $\lambda_1 = \lambda_2 = 0$. $K_n = \frac{\mu_n C_{ox}}{2} \frac{W}{L}$. Neglect r_o . The quiescent drain currents are $I_{D1} = 0.2 \text{ mA}$ and $I_{D2} = 0.5 \text{ mA}$.

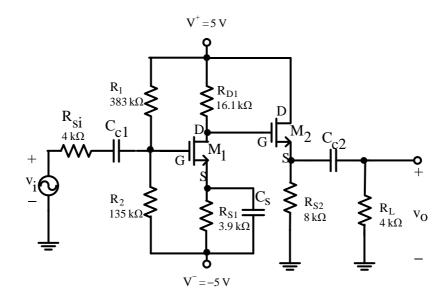


Figure 3